
1

Alloy: A New Object Modelling Notation

Daniel Jackson
MIT Laboratory for Computer Science

dnj@lcs.mit.edu

Abstract
Alloy is a lightweight, precise and tractable notation for object modelling. It attempts to
combine the practicality of UML’s static structure notation with the rigour of Z, and to be
expressive enough for most object modelling problems while remaining amenable to
automatic analysis.

Alloy has a textual notation, of which a subset is also expressible graphically. It has a
simple set-based semantics, and a type system that, by treating scalars as singleton sets,
allows relations and functions to be treated uniformly, and sidesteps the problem of unde-
fined expressions.

To answer the obvious question–-why yet another language?–-the paper gives Alloy, Z
and UML versions of a small example and compares them in detail.

Keywords

Object modelling, formal specification, static structure diagram, Z specification language,
Unified Modeling Language, Object Constraint Language, relational calculus.

1 Introduction
An object model describes a state space, in which each state is viewed abstractly as a col-
lection of objects and their inter-relationships. Object models are used primarily in the de-
sign of object-oriented programs. In the specification phase, the objects represent concep-
tual entities, often drawn from the problem domain. In the design phase, the objects corre-
spond to members of classes, and the model as a whole may be viewed as an abstraction
of the set of reachable heap states. Object models can also be useful in other applications
that involve relational structure, eg. for documenting the constraints of an architectural
style or integration framework.

Alloy is a new object modelling notation that was designed to meet three criteria: first,
to be lightweight–-small and easy to use, and capable of expressing common properties
tersely and naturally; second, to be precise–-that is, having a simple and uniform mathe-
matical semantics; and, third, to be tractable–-amenable to efficient and fully automatic
semantic analysis.

I designed Alloy because no existing language satisfied all three criteria. UML [Rat97],
whose object modelling facility consists of a graphical notation (the static structure dia-
gram) and OCL [WK99], a textual constraint language, is not precise, and perhaps not
lightweight either, at least by comparison to its much simpler predecessor OMT [Rum91]. Z
[Spi92] is precise but intractable, and not a natural fit for object modelling. NP [JD96a], the
language of my Nitpick checker [JD96b], had similar design goals to Alloy, but is also not
well suited to object modelling, with its Z-style declarations and a lack of quantifiers.

Alloy takes features from each of these. From UML, it takes diagrams and the navigation
syntax for relational image, whose origins are in OMT and Syntropy [CD94] respectively.
From Z, it takes set-based semantics, in which classes of objects are modelled as sets of
elements drawn from primitive types. From NP, it takes the idea of structuring the model to
expose opportunities for checking.

2

The challenge of Alloy’s design has been to combine these features smoothly. The key
idea is a simple type system that associates primitive types implicitly with sets that are not
declared as subsets of other sets, and that treats scalars as singleton sets. This allows a dia-
gram to be given a direct textual counterpart (with the additional benefit that a model can
always be expressed in text alone), and makes navigation expressions uniform, where in
Z, functions and relations are syntactically distinct. It also sidesteps the partial function
problem.

My work also adds to the long series of papers that use ideas from languages such as Z
to clarify the semantics of informal notations such as UML. This paper differs, however, in
two respects. First, it argues that the insights of formal specification can be used to simplify
UML, and to eliminate troublesome features, where previous work has tended to use for-
malization to lend support to its complexities. Second, the paper addresses mutability in
detail, a vital aspect of object modelling that is usually overlooked. UML provides a variety
of markings for association ends that include the keyword “frozen”. In Alloy, this is pro-
moted to a key language feature–-the notion of static sets and relations–-and given a sim-
ple and uniform semantics.

Alloy was designed hand-in-hand with its checker, Fox (Fast Object Constraint Solver),
to be described in a forthcoming paper. Several features of the language were either moti-
vated by the possibility of performing checks–-for example, the distinction between invari-
ant, condition and definition schemas–-or were added only when a checking mechanism
had been devised. Navigation expressions, for example, depend on quantifiers; these could
not be handled by previous methods [Jac96b, Jac98] but are handled efficiently by a new
method in Fox.

2 An Example
To see how Alloy works, consider a model describing family members and their inter-
relationships (Figure 1). The diagram is equivalent to the declarations of the textual model:
that is, to the schemas marked domain and state.

Person

Man Woman

Married

wife(~husband)

? ?

Namename
!

siblingsparents

3

Sets, Domains, Types and Relations

Each box in the diagram denotes a set of objects. An object is an abstract, atomic and un-
changing entity; the state of the model resides in the relations between objects, and in the
membership of objects in sets. There are two kinds of arrow connecting boxes. An arrow
with a closed head denotes subset: Man, Woman and Married are subsets of Person. Subsets
that share an arrow are disjoint; if the arrow head is filled, the subsets are exclusive. So
Man and Woman partition Person: every Person is either a Man or a Woman. An arrow with
an open head denotes a relation: name, for example, is a relation that maps Person to
Name.

Sets without supersets, such as Name and Person, are called domains, and are implicitly
disjoint. A type ty (D) is implicitly associated with each domain D. The expression (Man +
Woman), denoting the union of the two sets Man and Woman, is legal because both Man

model Family {
domain {Person, Name}
state {
 partition Man, Woman : static Person
 Married : Person
 parents : Person -> static Person
 siblings : Person -> Person
 wife (~husband) : Man ? -> Woman ?
 name : Person -> Name !
 }
def siblings {
 all a, b | a in b.siblings <-> (a.parents = b.parents)
 }
 inv Basics {
 all p | some p.wife <-> p in Man & Married
 no p | p.wife / in p.siblings
 all p | (sole p.parents & Man) && (sole p.parents & Woman)
 no p | p in p.+parents
 all p, q | p.name = q.name -> no (p.parents & q.parents)
 }
op Marry (m: Man!, w: Woman!) {
 m not in Married && w not in Married
 m.wife’ = w
 all p: Man - m | p.wife’ = p.wife
 all p | p.name’ = p.name
 all p | p.parents’ = p.parents
 Person’ = Person
 }
 assert HusbandsWife {
 all p : Married & Woman | p.husband.wife = p
 }
}

Figure 1: Alloy model for a family tree

4

and Woman have the type ty (Person); but the expression (Man + Name) is not, because
Man has the type ty (Person) and Name has the type ty (Name).

Markings at the ends of relation arrows denote multiplicity constraints: ! for exactly one,
? for zero or one, * for zero or more and + for one or more. Omission of a marking is
equivalent to *. So name, for example, maps each Person to exactly one Name (by the mark
at the Name end), and maps zero or more members of Person to each Name (by the mark
at the Person end). The composite label wife(~husband) declares a relation and its trans-
pose: wife maps Man to Woman, husband maps Woman to Man, and whenever one maps
object p to object q, the other maps q to p.

Mutability Constraints

Alloy includes some basic temporal constraints. Although very limited in expressiveness,
these turn out to be invaluable in practice–-and also more subtle than they might at first
appear. The stripes down the sides of the boxes labelled Man and Woman say that those
sets are static. The members of a static set may not migrate to other sets. So a Person may
not at one point in time be a Man and at another point not be a Man, but since the set
Married is not static, a Person may be Married at one point and not Married at another. Do-
mains are implicitly static, so a Person may not become a Name.

The hatch mark behind the arrowhead of the parents relation declares the relation to be
right-static. For any Person, the set of objects it is mapped to by the parents relation is
fixed during its lifetime: in other words, a Person may not change parents. This relation is
not left-static, however, a parent may give birth to more children. The model thus ex-
presses a ‘family tree’ view of existence: birth causes an addition to the state, but death
does not cause a deletion.

These temporal constraints have fundamental consequences for implementation. If Per-
son were implemented as a class with a field representing the parents relation, the static
property of the relation indicates that the set of objects pointed to by the field is fixed and
that an immutable datatype would be appropriate. In Java, for example, we could then use
an array rather than a Vector. Similarly, the fact that Man and Woman are static sets would
allow us to represent them as subclasses of Person; Married on the other hand, must be
represented as object state.

Syntropy’s ‘state types’ [CD94] corresponds to non-static sets. I have chosen to mark sets
when static, rather than vice versa, to obey the principle of monotonicity: that every addi-
tion to a diagram should strengthen the description, and never weaken it. This also moti-
vated the choice of UML- rather than OMT-style multiplicity markings. In OMT, a relation is
one-to-one if unmarked; adding solid blobs eliminates this constraint.

Textual Declarations

The domain and state schemas of the textual version correspond exactly to the diagram.
The domain schema lists the sets that are to be regarded as domains, in this case Person
and Name. The state schema declares the remaining sets, and the relations. A declaration
of the form

S : T

declares S to be a subset of the set T; a declaration of the form

r : S -> T

declares r to be a relation from S to T. The types are implicit; since Man, for example, is
declared to be a subset of the domain Person, which has implicit type Person, we can infer
that the left-hand type of the wife relation is Person. Multiplicity is indicated with the same
markings used in the diagram; mutability constraints are indicated with the keyword static.

5

Organization of Constraints

Only the most basic constraints can be expressed graphically. The remaining constraints
are expressed textually. These are divided according to their function. Definitions, namely
constraints that establish the values of extra components introduced for convenience, ap-
pear in schemas marked by the keyword def; here, there is just one, for the relation sib-
lings. Invariants, namely indicative properties of the domain, appear in schemas marked by
the keyword inv; in this case, there is only one, and it has the name Basics. Assertions are
constraints that are expected to follow from the invariants and definitions, and appear in
schemas marked by the keyword assert. Assertions about operations are also possible, but
none is shown here.

Navigation and Quantification

The definition of siblings consists of a single constraint: that, for all a and b that are mem-
bers of Person, a is a sibling of b if a and b have the same parents. The expression
b.siblings is called a navigation: intuitively, evaluation starts at some b, and the siblings re-
lation is ‘navigated’ to the set of members of Person that the relation maps b to. No quanti-
fier bounds need be declared; they are automatically inferred. In this case, since parents is
a relation whose left type is Person, a and b are inferred to have type ty (Person).

Expressions

All expressions in Alloy denote sets of objects. Expressions are formed with the conven-
tional set operators, and with navigation expressions. The expression (Man & Married), for
example, denotes the intersection of the sets Man and Married. The result of a navigation is
always a set; functions are treated as relations with a special property, so the expression
p.wife either evaluates to the empty set (when p is not mapped by wife) or to a singleton
set (containing the wife of p). The term some e is true when the expression e is not the
empty set. So the first constraint in Basics says that every person who has a wife is a mar-
ried man.

Even variables take on set values, although these are implicitly constrained always to be
singleton sets. The term e1 in e2 is true when the set denoted by e1 is a subset of that de-
noted by e2, so the term (p in Man & Married) has the same meaning it would have were p
to denote an element and in to denote set membership. Encoding scalars as sets is a useful
trick that allows functions and relations to be treated uniformly (since there is no function
application distinct from relational image), and resolves the problem of partial functions
applied outside their domain in a simple and pragmatic fashion. If f is a function that does
not map x, the expression x.f denotes the empty set, so if y is a scalar (and thus a singleton
set), x.f = y is false.

It is often convenient to state, as a side-condition, that a navigation expression yields a
non-empty set. The second constraint of Basics, for example, says that there is no person
whose wife is also a sibling. For a person p with no wife, the expression p.wife would
evaluate to the empty set, and the term p.wife in p.siblings would be true. The term

e1 /in e2

is like e1 in e2 but adds the condition that e1 is non-empty.

Suffixes and Relational Operators

There are no operators for combining relations; all expressions denote sets. However, in a
navigation expression, the transpose or closure of a relation may be used. In the constraint

no p | p in p.+parents

for example, p.+parents is the image of p under the transitive closure of the parents rela-
tion—the set of objects obtained by following parents once, then again, and again, and so

6

on until no further objects are added–-in other words, p’s ancestors. The constraint thus
states that no person is his or her own ancestor.

3 Comparison to Z
Z is a “system of notation for building structured mathematical theories”, and the language
itself has “no necessary connection with computer programming” [Spi92, p.128]. This ex-
plains both the strength and the weakness of Z. It is, on the one hand, remarkably pow-
erful, and can be used to model many different aspects of a software system. On the other
hand, its very generality prevents it from fitting any problem perfectly (and is a liability for
automatic checking).

Here, we’ll consider only how Alloy’s constructs make object modelling easier and more
natural. But there are deeper advantages to tailoring the language to the problem. A more
tightly fitting “frame” can paradoxically make problems easier to solve; moreover, Z’s re-
luctance to treat the connection to software as anything more than informal convention
results in descriptions whose meaning is hard to pin down [MJa95].

A Z specification for our problem could be written in many different ways. So as not to
be accused of comparing with a strawman, I have written two versions that typify extremes
of Z usage. The basic declarations (in the schema FamilyDecls) are shared, but the con-
straints appear twice, once in the schema FamilyInv1, and again in FamilyInv2. In both
cases, the constraints match the Alloy constraints of Figure 1, although the third Alloy con-
straint is given, for readability, as two separate constraints in Z.

FamilyInv1 uses relational operators in place of quantifiers. The formulas that result–-
once called “Sorensen shorties”–-are terse and elegant, but rarely natural. This style has
been used effectively in many published Z specifications; see, for example, the Simple As-
sembler example in [Hay93]. NP supported only this style, and I found that many readers,
especially novices and programmers without mathematical background, are uncomfortable
with it. The first constraint can also be expressed with relational operators alone, but Z’s
lack of either a complementation operator or a universal relation constant with implicit
type makes it rather unwieldy. FamilyInv2 is what most novices would produce, and corre-
sponds to the style of Alloy and UML.

[PERSON, NAME]

È FamilyDecls__________________________
®Person, Man, Woman, Married : F PERSON
®Name : F NAME
®parents, siblings : PERSON j PERSON
®wife, husband : PERSON © PERSON
®name : PERSON f NAME
Ç__________________________________
®<Man, Woman> partition Person
®Married z Person
®parents e Person j Person
®siblings e Person j Person
®wife e (Man I Married j Woman I Married)
®husband = wife~
®name e Person j Name
Ð__________________________________

7

ÈFamilyInv1_____________________________
®FamilyDecls
Ç__________________________________
®siblings = {a, b: PERSON | parents á{a}â = parents á{b}â ¥ a b }
®disjoint <wife, siblings>
®parents t Man e PERSON § PERSON
®parents t Woman e PERSON § PERSON
®disjoint <parents+, id PERSON>
®disjoint <name ; name~ , parents ; parents~>
Ð__________________________________

ÈFamilyInv2_____________________________
®FamilyDecls
Ç__________________________________
®A a, b : Person ¥ a b e siblings Û parents á{a}â = parents á{b}â
®O p: Person ¥ p e dom wife ¦ wife(p) e siblings á{p}â
®A p: Person ¥ #(parents á{p}â I Man) [1
®A p: Person ¥ #(parents á{p}â I Woman) [1
®O p: Person ¥ p e parents+ á{p}â
®A p, q: Person ¥ name(p) = name(q) Þ parents á{p}â I parents á{q}â = 0
Ð__________________________________

ÈHusbandsWife___________________________
®FamilyDecls
Ç__________________________________
®A p : Married I Woman ¥
® p e dom wife ¦ wife(p) e dom husband ¦ husband (wife(p)) = p
Ð__________________________________

ÈOp________________________________
®D FamilyInv
Ç__________________________________
®A p: Person I Person’ ¥
® p e Man Û p e Man’
® ¦ p e Woman Û p e Woman’
® ¦ parents á{p}â = parents’ á{p}â
Ð__________________________________

ÈMarry_______________________________
®Op
®m?, f?: PERSON
Ç__________________________________
®m? e Man \ Married ¦ f ? e Woman \ Married
®Person = Person’ ¦ parents = parents’ ¦ name = name’
®wife’ = wife ± {m? f? }
Ð__________________________________

Figure 2: Z specification corresponding to Figure 1

8

Types and Sets

FamilyDecls shows how remarkably cumbersome it is to encode an object model in Z.
Given types must be introduced for each of the domains, and explicitly. This is only a mi-
nor inconvenience; more serious is that only the given types may be appear on the right-
hand side of type declarations, and so the constraints implicit in the Alloy declarations
must be given explicitly in the body of the schema. In short, the translation of a UML dia-
gram into Z is untidy, albeit mechanical.

In most Z specifications, this is not a problem. Z specifications, unlike object models, do
not generally introduce separate state components for the sets of elements mapped, and
mapped to, by relational components. On the contrary, it is common to make frequent use
of expressions such as dom r to refer to the elements mapped by the relation r.

Alloy’s inference of the bounds of quantified variables is a useful feature also not pres-
ent in Z. Of course, Alloy can offer these features only because it is simpler and more con-
strained than Z. I am not suggesting that, in the context of notions such as schemas as
types, it would make sense to infer types.

Temporal Constraints

Z not only has “no necessary connection with computer programming”; it does not even
embody the notion of a state machine. States and state transitions are fundamentally no
different, and there is no notion of constancy. It is not possible in Z to declare a state
component and constrain it to be fixed. A Z specification of a file hierarchy with a fixed
root, for example, would either include a template operation that does not change the root
(and which would be imported by all operations by convention), or would define root as a
global constant, violating the modularity of the specification.

Surprisingly, the notion of constancy–that the value of a state component does not
change–-is not of much use in object modelling. Individual objects are continually created
and destroyed; what tends to be constant is the relationship between an existing object
and other objects. Of course, we could avoid this problem by modelling relations as fields
of objects, as in [Hall90]. But this approach is not in the spirit of object modelling, whose
essence is precisely the global representation of state. In this respect, object modelling is
certainly not “object-oriented”. Alloy’s contribution here, with the notion of static sets and
relations, is to show how the notion of constancy with respect to individual objects can be
expressed while retaining global state, and without assigning state to objects.

Navigation, Sets and Scalars

The constraints of FamilyInv2 illustrate in particular two inconveniences of Z. First is the
need to cast scalars to singleton sets prior to taking the relational image, and the differing
syntax for function application and relational image. From an object modelling point of
view, it seems odd that changing the multiplicity of a relation should also require a change
in the syntax of the expressions in which the relation appears. Alloy avoids this by treating
scalars as singleton sets.

Second, Alloy requires no guard (such as the test p in dom wife) to ensure that expres-
sions involving applications of partial functions are defined. Had name been declared as
partial rather than total, the final constraint would have been

A p, q: Person ¥ p e dom name ¦ q e dom name ¦ name(p) = name(q)
 Þ parents á{p}â I parents á{q}â = 0

but the Alloy constraint would have remained

all p, q | p.name = q.name -> no (p.parents & q.parents)

9

Schema Roles

The role of a schema in a Z specification is determined by informal conventions. All sche-
mas that mention no primed variables are methodologically equivalent. No distinctions are
made between very different parts of the specification: declarations of state components;
definitions of additional, redundant components; state invariants; state conditions used in
invariants and operations; and assertions about invariants, conditions or operations.

This means that any such distinctions must be pointed out informally in accompanying
text. The assertion of the Alloy model would likely be written as the free-standing theorem

A FamilyInv . HusbandsWife

It also limits the possibilities of tool support. The form of an Alloy model suggests checks
to be performed: that assertions are valid; that definitions determine the value of the de-
fined state component; and that invariants are preserved by operations.

Relational Formulas

Relations are not first-class citizens in Alloy. The statement that the operation Marry adds a
new pair to the wife relation–-trivial in Z–-cannot be written directly in Alloy. One possible
remedy to this deficiency, currently being investigated, is to include an assignment state-
ment in the language. The statement

m.wife := f

would then be treated as a shorthand for two constraints:

m.wife’ = w

and the frame condition

all p: Person - m | p.wife’ = p.wife

Lexical and Typographic Issues

I hesitate to criticize Z for its elegant typography. But I wonder whether it may not, in fact,
be a serious impediment to its widespread use. Z’s mathematical symbols are not available
in standard fonts – not even in Adobe’s massive Mathematical Pi – and schema boxes are
hard to draw in standard word processors. Neither adopting an amateur font, nor taking on
Latex, are palatable options outside academia. For most software engineers, just including
Z within a document is hard. Perhaps unicode will eventually solve this problem–-Lucida
Sans, for example, has a wonderful arrow collection–-but in the meantime, an ASCII nota-
tion seems to have an advantage.

4 Comparison to UML
The Unified Modeling Language (UML) [Rat97] is a combination of the notations of Rum-
baugh, Booch and Jacobson. For object modelling, it provides a graphical “static structure”
notation, and OCL (Object Constraint Language) [WK99], a textual notation originally de-
veloped at IBM. UML has the backing of a large consortium that includes Microsoft, Oracle,
HP and IBM, and was made a standard by the Object Management Group in 1997.

OCL was designed to be less intimidating to practitioners than languages such as Z: it
makes no use of Greek letters and many of its notions will be familiar to object-oriented
programmers. But conceptually it is far more complicated than Z. It employs the same ba-
sic logical and set-theoretic notions of Z and Alloy, but applies these in the context of a
programming model that includes subclass and parametric polymorphism, operator over-
loading, multiple inheritance, and introspection.

These complexities are a formidable obstacle to giving OCL a semantics, and in many
cases seem to make the notation harder to use.

10

Gross Structure

The graphical notation of UML has no textual counterpart, so every model must include a
diagram. Moreover, those diagrammatic constraints that are expressible in the textual nota-
tion do not map to it straightforwardly. The fact that Person is partitioned into Man and
Woman, represented in the diagram by marking Person as abstract and Man and Woman as
disjoint, would be written

Person
self.oclIsKindOf (Man) implies not self.oclIsKindOf (Woman)
self.oclIsKindOf (Woman) implies not self.oclIsKindOf (Man)
self.allInstances->select (oclIsType = Person)->isEmpty

Some graphical elements are described so informally in the UML documentation that
their significance is unclear. Whether an association’s property of being an aggregation is
expressible in OCL, for example, is hard to tell. UML does not seem to make the distinc-
tion between static and non-static sets, although this distinction is present in Catalysis
[DW98].

The graphical notation conveniently distinguishes defined components (with a back-
slash before the name), but OCL does not seem to have a corresponding notion. Nor does
UML separate constraints of the model proper from assertions–-redundant constraints that
are intended to follow.

Contexts, Classes & Types

Each constraint appears in the context of a particular class of objects, and is implicitly uni-
versally quantified. The Alloy assertion

{disjoint}

husband wife

0..10..1

1

name

parents

/siblings

{frozen}

0..*

0..*0..*

0..*

Married Person Name

WomanMan

11

all p : Married & Woman | p.husband.wife = p

for example, appears under Woman. Contexts make constraints more terse, but can induce
an arbitrary structure on the model as a whole. This constraint, for example, might equally
well have appeared under Married. It also seems odd that an operation such as Marry,
which is no more about one object than another, should need to be assigned to a class.

In place of the traditional syntax of first-order logic, UML uses a linear form in which
formulas are treated as navigation expressions of boolean type. A constraint about all ele-
ments of a set is written as an expression denoting the set, suffixed with a parameterized
formula that is evaluated over all its members. This form is intuitively appealing, but can
be cumbersome for elaborate constraints, or for quantifications over more than one vari-
able. The last constraint of Person, for example, corresponds to the Alloy constraint

all p, q | p.name = q.name -> no (p.parents & q.parents)

The interpretation of UML expressions is complicated by rules that determine when im-
plicit flattening operators are applied. An expression containing one relation denotes a set;
but an expression with two denotes a bag. As a result, the expressions e.r and e.p.q are not
equivalent when r is the relation join of p and q, and one cannot define two relations, par-
ents and grandparents, so that p.parents.parents and p.grandparents have the same meaning.

Classes are not treated semantically as simple sets in UML. One cannot define the men
that are married as the intersection of two sets, as in Alloy or Z. Instead, a constraint about
such a set must employ built-in operators to type-case and downcast objects. This can

Person
self.siblings = Person.allInstances->select(parents = self.parents)
self.parents->select (oclIsKindOf (Man))->size <= 1
self.parents->select (oclIsKindOf (Woman))->size <= 1
not self.parent->includes (self)
Person.allInstances->forall (p, q | p.name = q.name implies
 p.parents->intersection (q.parents)->isEmpty)

 Man
self.wife.notEmpty implies self.oclIsKindOf (Married)
self.oclIsKindOf (Married) implies self.wife.notEmpty
self.wife->intersection (self.siblings)->isEmpty

Woman
self. oclIsKindOf (Married)-> self.husband.wife = self

Man :: Marry (w: Woman)
pre: not self.oclIsKindOf (Married)
 not w.oclIsKindOf (Married)
post: self.wife = w
 Man.allInstances->forall (m | m != self implies m.wife@pre = m.wife)
 Man.allInstances->forall (m | m.name@pre = m.name)
 Man.allInstances->forall (m | m.parents@pre = m.parents)

Figure 3: UML Model corresponding to Figure 1
(accompanying diagram shown on previous page)

12

make life difficult. The following constraint from the UML semantics [Rat97, Section 9.3]

Collaboration

// if a ClassifierRole or an AssociationRole does not have a name then it should be the only one with a
particular base.

self.ownedElement->forAll (p |
(p.oclIsKindOf (ClassifierRole) implies

p.name = ’’ implies
self.ownedElement->forAll (q |

q.oclIsKindOf(ClassifierRole) implies
(p.oclAsType(ClassifierRole).base =

q.oclAsType(ClassifierRole).base implies p = q)))
and

(p.oclIsKindOf (AssociationRole) implies
p.name = ’’ implies

self.ownedElement->forAll (q |
q.oclIsKindOf(AssociationRole) implies

(p.oclAsType(AssociationRole).base =
q.oclAsType(AssociationRole).base implies p = q))

)

for example, would be written in Alloy as

all c | all e, f : c.ownedElement | (no e.name) && (e.base = f.base) -> e = f

The notion of type and subtype in UML has some subtle consequences that limit ex-
pressiveness. Since constraints are implicitly inherited by subclasses, existential quantifiers
cannot appear outermost in a formula. For example, the Alloy constraint

some p: Person | some p.wife

(that there is a person with a wife) cannot be expressed in UML. Were it to be expressible,
it would have to be placed in the context of Person, and then automatically inherited by
Woman, resulting in the additional constraint that some woman has a wife. This presuma-
bly explains the odd rule that multiple iterators are allowed only for universal and not ex-
istential quantifiers [WK99, p.47].

Functions

UML, like Z and unlike Alloy, treats functions and relations differently. The result of a
navigation through a function is a scalar and not a set, and expressions may be undefined.
How undefined expressions are treated is not fully explained [WK99, p.56]. And, oddly, the
expression self.f.notEmpty is used to state that self is mapped by f, even though self.f has at
best a scalar value, and notEmpty is an operator only on collections [WK99, p.80].

Expressiveness

UML is generally more expressive than Alloy. Its datatypes include sequences, bags, strings
and numbers. In its relational subset, however, it is less expressive than Alloy. Because
there is no transitive closure operator, the Alloy constraint

no p | p in p.+parents

cannot be expressed in UML. As a workaround, the UML definition, which uses OCL for its
well-formedness rules, attempts to axiomatize closure. For example, in [Rat97, Section 9.3],
the following equation is given:

// The operation allPredecessors results in the set of all Messages that precede the current one.
allPredecessors : Set(Message);
allPredecessors = self.predecessor->union (self.predecessor.allPredecessors)

13

This does not have the desired effect, however; the operation may return the set of all
messages and still satisfy its specification.

5 Discussion

Evaluation

In this paper I’ve attempted to show, by way of example, that Alloy can be as natural as
UML, but at the same time rests on a firm semantic foundation. Developing a simple se-
mantics and type system for Alloy has helped me simplify the language and root out ambi-
guities. Both have been ‘implemented’ in Fox, Alloy’s analyzer: the semantics as a transla-
tion to boolean formulas, and the type system as a type checker.

Alloy’s graphical notation has been taught twice to undergraduates in MIT’s software
engineering course 6170. Its textual notation has been used in several small case studies,
including the design of a graph editor, the reverse engineering of a component of CTAS (a
NASA air-traffic control system), and most recently in a demonstration that Fox could
automate an analysis of COM described originally in Z [SSM97].

Alloy has many deficiencies, some noted in the discussion above. The most serious are
the omission of relational formulas, which make operations hard to write (and might be
remedied either by adding such formulas or by inferring frame conditions), and of se-
quences. Alloy also needs better structuring mechanisms. It lacks the generic schemas of Z,
so the modeller cannot define polymorphic operators or constraints (eg, that a relation
forms a tree). Also, it has no features for composing models (see for example, the notion
of views in [Jac95] or frameworks in [DW98]).

Related Work

The Catalysis method of D’Souza and Wills [DW98] embodies a refinement of UML. Its
graphical notation is close to Alloy’s, and its textual notation offers infix variants of OCL’s
post-fix operators. The book offers perhaps the clearest and most rigorous explanation of
UML’s features. But Catalysis’s contribution is primarily methodological, and the underlying
semantics of UML is not addressed in detail.

Several schemes have been devised to translate object models to formal specifications,
both as an exercise to expose semantic issues, and as a means of obtaining an analyable
model. Larch is a popular target because its Shared Language provides a mathematical
foundation that is not biased towards any style of specification structuring [BC95, BG98,
HHK98]. Bickford and Guaspari’s translation [BG98] addresses many of the complexities of
UML, including subtyping and contexts. Their work also exposes a number of serious flaws
in the definition of UML.

Z is another popular target, because its built-in datatypes–-sets and relations–are well-
suited to object modelling. Larch’s algebraic operators, in contrast, are not a natural fit, and
translation is rather indirect. UML classes are usually represented in Z with schema types
[FBL97, FBLS97], following the object-oriented style of [Hall90]. More recently, work has
begun on a formalization of UML in which semantic functions are defined in Z [AC98].

My work has a different aim from all of these. I have not attempted to account for the
complexities of existing object modelling notations, but rather to devise a new language
without the complexities. In particular, Alloy dispenses with subtyping and undefined ex-
pressions, and has a simple semantics and type system that can be described in a couple
of pages (see Appendix A). I have followed this path for two reasons. First, I am uncon-
vinced that the complexities of UML add significantly to its utility. And second, I am not
optimistic about the possibilities of automated tool support for a language that was de-
signed without analysis in mind.

14

Acknowledgments
Thanks to John Chapin, Michael Jackson, Barbara Liskov and Allison Waingold for their
comments on earlier versions of Alloy, and to Martin Abadi for pointing out that Alloy’s
confusion of singleton sets and scalars has a fine pedigree [Kan97]. This research was
funded in part by the National Science Foundation (under grant CCR-9523972), and by by
the MIT Center for Innovation in Product Development (under NSF Cooperative Agreement
Number EEC-9529140). Thanks also to the Visio Corporation for donating diagram drawing
software to my class, and for helping in the development of an Alloy stencil.

References
[AC98] A. S. Evans and A.N.Clark. Foundations of the unified modeling language. In

2nd Northern Formal Methods Workshop, Ilkley, Electronic Workshops in
Computing. Springer-Verlag, 1998.

[BC95] Robert H. Bourdeau and Betty H.C. Cheng. A Formal Semantics for Object
Model Diagrams. IEEE Transactions on Software Engineering, October 1995.

[CD94] Steve Cook and John Daniels. Designing Object Systems: Object-Oriented
Modelling with Syntropy. Prentice Hall, 1994.

[DW98] Desmond F. D’Souza and Alan Cameron Wills. Objects, Components and
Frameworks With Uml : The Catalysis Approach. Addison-Wesley, 1998.

[FBL97] Robert B. France, Jean-Michel Bruel and Maria M. Larrondo-Petrie. An
Integrated Object-Oriented and Formal Modeling Environment. Journal of
Object Oriented Programming (JOOP), 10(7), November/December 1997.

[FBLS97] Robert B. France, Jean-Michel Bruel, Maria M. Larrondo-Petrie, and Malcolm
Shroff. Exploring the Semantics of UML Type Structures with Z. Proceedings of
the Formal Methods for Open Object-based Distributed Systems (FMOODS’97),
1997.

[Hall90] Anthony Hall. Using Z as a Specification Calculus for Object-Oriented Systems.
In D. Bjorner, C.A.R. Hoare, and H. Langmaack, eds., VDM and Z: Formal
Methods in Software Development, Lecture Notes in Computer Science, Volume
428, pp. 290–381, Springer-Verlag, New York, 1990.

[Hay93] Ian Hayes. Specification Case Studies. Prentice Hall, 1993.
[HHK98] Ali Hamie, John Howse and Stuart Kent. Interpreting the Object Constraint

Language. Proceedings of Asia Pacific Conference in Software Engineering,
IEEE Press, 1998.

[Jac95] Daniel Jackson. Structuring Z Specifications with Views. ACM Transactions on
Software Engineering and Methodology, Vol. 4, No. 4, October 1995, pp. 365–
389.

[Jac98] Daniel Jackson. An Intermediate Design Language and its Analysis.
Proceedings of ACM SIGSOFT Foundations of Software Engineering, Orlando,
Florida, 1998.

[JD96a] Daniel Jackson and Craig A. Damon. Nitpick Reference Manual. CMU-CS-96-
109. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
January 1996.

[JD96b] Daniel Jackson and Craig A. Damon. Elements of Style: Analyzing a Software
Design Feature with a Counterexample Detector. IEEE Transactions on
Software Engineering, Vol. 22, No. 7, July 1996, pp. 484–495.

[Kan97] Akihiro Kanamori. The mathematical import of Zermelo’s well-ordering
theorem. Bulletin of Symbolic Logic, Volume 3, Issue 3, September 1997,
pages 281 - 311.

[MJa95] Michael Jackson. Software Requirements and Specifications: A Lexicon of
Practice, Principles and Prejudices. Addison-Wesley, 1995.

[Par95] David Parnas. A Logic for Describing, not Verifying, Software. Erkenntnis
(Kluwer), Volume 43, No. 3, November 1995, pp. 321–338.

15

[Rat97] Rational Inc. The Unified Modeling Language. see http://www.rational.com.
[Rum91] J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.
[Saa97] Mark Saaltink. Domain Checking Z Specifications. 4th NASA LaRC Formal

Methods Workshop, September 1997.
[Spi92] J. Michael Spivey. The Z Notation: A Reference Manual. Second ed, Prentice

Hall, 1992.
[SSM97] K.J. Sullivan, J. Socha and M. Marchukov. Using Formal Methods to Reason

about Architectural Standards. Proceedings of the International Conference on
Software Engineering (ICSE97), Boston, Massachusetts, May 1997.

[WK99] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1999.

16

Appendix A: Kernel Syntax and Semantics
Alloy is based on a much smaller kernel language that is technically equal in expressive
power to the full language (but much less convenient to use). We shall give the semantics
in terms of the kernel, and then explain how the additional features of the full language
can be regarded as syntactic sugar.

The top-level syntactic entity in the kernel language is a frame. Frames are just formulas
with accompanying declarations, and form the basis of the schemas of a full specification.

Syntax

An abstract syntax for the kernel is given in Figure A1. BAR and PRIME are non-
terminals representing the vertical bar and prime mark respectively.

A frame consists of a series of declarations of state components, followed by a formula.
Formulas are built from the standard logical operators, and universal quantifiers, and from
just one kind of elementary formula. An expression is either the name of set component,
or a composite expression using standard set operators, or a navigation expression formed
from an expression and a suffix. A suffix is a sequence of qualifiers; a qualifier is the name
of a relation, with transitive closure and transpose applied optionally as prefix operators. A
relation is named either with a relation component, or with an indexed relation compo-
nent, and its index, which must be a variable. Finally, the state components may optionally
be marked with a prime.

Typing

Alloy is strongly typed. A formula is typed within an environment that maps identifiers–-
namely variables and state components–-to types. Types take three forms. Expressions
(and set components) are given set types; the judgment

frame ::= decl * formula

decl ::= set-comp : domain | relation-comp : domain -> domain
 | indexed-comp [domain] : domain -> domain

formula ::= not formula | formula && formula | all var : domain BAR formula | expr in expr

expr ::= set-comp | expr + expr | expr – expr | expr & expr | expr . suffix

suffix::= qualifier | qualifier . suffix

qualifier ::= relation | + qualifier | ~ qualifier

relation ::= relation-comp | indexed-comp [var]

set-comp ::= identifier | identifier PRIME

relation-comp ::= identifier | identifier PRIME

indexed-comp ::= identifier | identifier PRIME

variable ::= identifier

domain ::= identifier

Figure A1: Syntax of Alloy Kernel

17

E e : T

says that, in environment E, expression e denotes a set of elements of primitive type T.
Suffixes (and relation components) are given relation types; the judgment

E s : S T

says that the suffix s denotes a relation from primitive type S to primitive type T. These
judgments follow directly from the declarations. Lastly, an indexed relation component r
declared as

E[co (d0) : ty (d0), co (d0)’ : ty (d0)] d1 … dn f

E d0 d1 … dn f

E f , E g

E f && g

E f

E not f

E[v : T] f

E all v : T | f

E e1 : T, E e2 : T

E e1 in e2 : T

E e1 : T, E e2 : T

E e1 + e2 : T

E e1 : T, E e2 : T

E e1 & e2 : T

E e1 : T, E e2 : T

E e1 - e2 : T

E e : S, E s : S T

E e.s : T

E q : S T

E ~q : T S

E q : S T

E +q : T S

E r : S T V , E v : S

E r [v] : T " V

E q : S T, E s : T V

E q.s : S V

Figure A2: Type rules for Alloy Kernel

18

r [S] : T �V

results in the judgment

E r : S T V

saying that r denotes a function that maps objects from the primitive type S to relations
from T to V. In the type S T, we shall refer to S as the left-type and T as the right-type. In
the indexed type S T V, S is the index-type, T the left-type and V the right-type. Note that
there are no scalar types; a scalar is just a singleton set. Also, types may not be nested: S
and T may not themselves be types.

Formulas do not have types, but must be type checked. To represent the successful
typing of the formula f in the context of the declarations d0, d1, etc, we use the judgment

E d0 d1 … f

Declarations and quantifiers extend the environment; we write E [x1 : t1, x2 : t2, …] to de-
note the environment that is like E but which additionally assigns the type t1 to the vari-
able or component x1, t2 to x2, etc. For a declaration d, co(d) and ty(d) are the component
and type respectively. The environment E[co (d) : ty (d), co (d)’ : ty (d)] is E extended by an as-
signment of the type of d to its component and to its component primed.

The type rules are shown in Figure A2 in standard form as an inference system. Each
rule has a hypothesis (above the line) and a consequent (below); when the hypothesis
holds, the consequent may be inferred. For example, the rule

E e1 : T, E e2 : T

E e1 + e2 : T

says that if expressions e1 and e2 can be shown both to have type T, then the compound
expression e1 + e2 has type T also. Note that, throughout, S and T denote primitive types
and not arbitrary type expressions. So a hypothesis of the form e : T does not mean that e
has some arbitrary type T, but that e denotes a set of elements drawn from the primitive
type T.

Semantics

The semantics of an expression or formula is defined in the context of an assignment that
maps variables, components and domains to values. The value assigned to x by an as-
signment A is written A[x], and is called the denotation of x. Since top-level formulas may
have no free variables, they are interpreted with assignments that map only components
and primitive types.

Values are constructed from a universe �of objects. For a given collection of formulas
and declarations, an assignment A is well formed if it maps

1 each primitive type appearing in a declaration to a set of objects:

A [T] : �

2 each declared set component to a set of objects;

A [s] : �

3 each declared relation component to a set of pairs of objects;

A [p] : � �×�

4 each declared indexed relation component to a function from objects to sets of pairs of
objects.

A [p] : � � � �×�

(Here X �Y denotes the partial function from X to Y.)

19

An assignment must also be well typed. That is, the value associated with a component
must be consistent with the value associated with the constituents of its type:

1 the denotations of distinct primitive types are disjoint;

A [S] A [T] ≠ S = T

2 the denotation of a set component is a subset of the denotation of its primitive type;

E s : T A [s] A [T]

3 each pair in the denotation of a relation draws its first (second) element from the
denotation of the left-type (right-type) of the relation’s type;

E p : S T A [p] A [S] × A [T]

4 the denotation of an indexed relation component is a function mapping objects
belonging to the denotation of its index-type to a set of pairs whose first (second)
elements are drawn from the denotations of the left (right) types:

E p : S T V A [p] ∈ A [S] �� �A [T] × A [V])

5 the denotation of a variable is a singleton set:

E v : T ∃D� A [v] = ^D�` a ∈�A [T]

In the semantics, different assignments are used to interpret different parts – ie, subfor-
mulas, expressions, etc – of the formula. For a top-level formula, an assignment will not
map any variables; within a quantified formula, an assignment will map all free variables.
For any part of formula, the set of assignments that is well typed is determined using the
type environment in which the type of the part itself was judged.

Figure A3 gives the semantics, in which the meaning of a formula is defined composi-
tionally in terms of its parts. A separate semantic function is defined for each syntactic
category.

Now, finally: the meaning of a kernel frame, consisting of a series of declarations and a
formula f, is the set containing all assignments A that are well typed (as described above),
and for which F[f]A is true. As we shall see in the next section, a frame might correspond
to a collection of state invariants, in which case its meaning is the set of states satisfying
the invariants. Alternatively, it may correspond to an operation, in which case its meaning
is a set of state transitions. And finally, it may represent the negation of an assertion
claimed to be true, in which case its meaning is a set of counterexamples: states if the as-
sertion is about states, and transitions if about transitions.

Expressiveness

Since the kernel language represents the essence of the full language, it can act as a surro-
gate for theoretical purposes. I have yet to conduct a serious investigation into Alloy’s ex-
pressive power, but a few key properties are clear.

Alloy is a first-order language: there are no relations over relations, for example, or
quantifiers over sets or relations. On the other hand, the language is more expressive than
first-order logic with at most dyadic predicates, since it includes transitive closure, which
cannot be axiomatized in a first-order fashion. Since tuples can be modelled with extra
primitive types, and appropriate projection functions, an argument could be made (similar
to that made by Tarski for the relational calculus) that Alloy subsumes first-order logic. At
any rate, Alloy is at least as powerful as its predecessor NP (see [Jac98]), and is less pow-
erful than Z. It should be straightforward to show that Alloy is at least as expressive as Tar-
ski’s relational calculus (since any formula about relations can be expressed in Alloy as a
formula about how the relations map their elements), and is thus undecidable.

20

Appendix B: Full Language
Alloy is a small language, but is still much larger than the kernel In this section, I’ll illus-
trate each respect in which the full language extends the kernel. All the extensions are de-
fined as straightforward syntactic sugarings, so no new semantic notions are needed.

Structuring Mechanisms

Formulas are organized into schemas that, in the context of checking, play different roles.
For our purposes here, however, each schema, whatever its role, defines a set of assign-
ments.

Operator Shorthands

The first category of extensions is trivial. It adds the missing logical operators (disjunction
and implication), existential quantification, equality of expressions, and reflexive-transitive
closure for qualifiers:

shorthand expanded form

f || g not (not f && not g)

f -> g not (f && not g)

some v: d | f not all v: d | not f

d = e d in e && e in d

e.*q.s (e.+q) + e).s

Semantic functions
F : Formula t Assignment�t Bool
E : Expr t Assignment t 3�(
S : Suffix t Assignment t 3�(�×�(

Formulas
F [f && g] A = F [f] A ∧�F [g] A
F [not f] A = ¬ F [f] A
F [all v: T | f] A = ∧ {F [f] (A / v h�a) | a ∈�A [T] }

Expressions
E [v] A = A [v]
E [s] A = A [s]
E [d + e] A = E [d] A ∪�E [e] A
E [d & e] A = E [d] A ∩��E [e] A
E [d - e] A = E [d] A ?��E [e] A

Suffixes
S [p[v]] A = E[p] (E[v] A) A
S [~p] A = { (y, x) |(x, y) ∈E [p] A}
S [+p] A = { (x, z) |∃y1, y2, …, yn. (x,y1) ∈E [p] A ∧ (y1,y2) ∈E [p] A ∧ ... ∧ (yn,z) ∈E [p] A}
S [p.s] A = {(x, z) | ∃y. (x, y) ∈E [p] A ∧(y, z) ∈E [s] A

FigureA3: Semantics of Kernel

21

Quantifier Shorthands

Some convenient quantifiers are added, shown with their expansions in the table below.
They assert there is no value satisfying the formula (no), at most one (sole), and exactly
one (one).

shorthand expanded form

no v: d | f all v: d | not f

sole v: d | f all v1: d | all v2: d | (some v: d | v = v1 && f) &&(some v: d | v = v2 && f) -> v1 = v2

one v: d | f (sole v: d | f) && (some v: d | f)

The traditional shorthand for nested quantifiers is available:

all a, b: d | f

is short for

all a: d | all b: d | f

Implicit Types

Types of components and variables are implicit in Alloy, and are automatically inferred. An
Alloy model begins by declaring a collection of set components marked by the keyword
domain. With each of these set components, called domains, a primitive type of the same
name is implicitly associated. Subsequent component declarations may then refer to these
domains, and to each other (so long as there are no forward references). For example, the
declarations

 domain { Person }
 state {
 Man, Woman : Person
 wife : Man -> Woman
 }

introduce four state components and a primitive type ty(Person); the equivalent kernel
declarations would be

Person : ty(Person)
Man : ty(Person)
Woman : ty(Person)
wife : ty(Person) -> ty(Person)

Note that the ty(Person) appearing on the right here is a type name, and is used in type
checking; the Person appearing on the left is a set component. The declarations in the full
language express additional properties: that the sets Man and Woman are subsets of the set
Person, and that the wife relation maps elements of Man to elements of Woman.

This scheme brings several advantages. The primary motivation is to match the intuitive
semantics of graphical object models, in which boxes without parents in the diagram rep-
resent sets that are assumed to be disjoint, but which, unlike the sets denoted by the given
types of Z, are not constant. It dispenses with the need to associate given types explicitly
with these sets; allows declarations to include simple constraints; and makes type checking
only marginally harder and no less effective.

Types are also implicit in quantified formulas. The formula (Q v | f), where Q is a quanti-
fier, is short for (Q v: t | f), where t is the primitive type of v inferred from f, according to the
rules of Figure A2. In certain pathological formulas, such as (all v | v = v), the type of the
variable is under-constrained, and the formula is deemed to be ill-typed.

Quantifier Bounds

Quantified variables may be bounded; all v: e | f, for example, is taken to be short for

22

all v | v in e -> f

There is also implicit bounding. According to the semantics, each variable can only take on
a value from the denotation of its primitive type. It turns out, however, to be useful to
make the implicit bound stronger, and to regard all v | f as short for

all v | v in dv -> f

where dv is the domain associated with the primitive type of v.
There are two rather technical reasons for doing this. First, the domains represent the

world of atoms known to the object model. When we write a formula such as

all p | p in (Woman + Man)

we expect it to mean that every Person is a Man or a Woman. Were the bound to be the
primitive type Person and not the domain Person, this formula would not hold for the state
in which

ty (Person) = {alice, bob, carol}

Person = {alice, bob}

Man = {bob}

Woman = {alice}

simply because the primitive type ty(Person) includes an extra element carol.
Second, we would like formulas to be ‘scope-monotonic’. An assignment is said to be

within a scope of k if the denotation of each primitive type is a set containing no more
than k elements. A formula is scope-monotonic if, whenever it has a satisfying assignment
in a scope k, it also has a satisfying assignment in scope k+1. This property turns out to be
crucial in implementing a checking tool that evaluates a formula within a finite scope.
Without it, the bizarre situation can arise in which increasing the scope and thus consider-
ing more assignments results in fewer solutions.

Quantifiers let Alloy dispense with set constants. The formula Q e, where Q is a quanti-
fier and e is an expression, is short for

Q v | v in e

So some Woman asserts that the set Woman is non-empty; no Man & Woman asserts that the
intersection of Man and Woman is empty; and all Man asserts that every Person is a Man.

Multiplicity & Domain Constraints

A multiplicity marking in the declaration of a set component bounds the size of the set by
adding conditions as follows:

declaration condition informal interpretation

s : t ! one s s is scalar

 s : t ? sole s s is optional

 s : t + some s s is non-empty

Multiplicity markings in the declaration of a relation component give rise to conditions on
its value as a whole (rather than conditions on the pairs individually). The left- and right-
types are treated independently; conditions are added for the multiplicity markings of each
in turn, according to this table:

23

declaration condition informal interpretation

r : s -> t ? all a: s | sole a.r r is a partial function

r : s -> t ! all a: s | one a.r r is a total function

r : s -> t + all a: s |some a.r r is total

r : s ? -> t all a: t | sole a.~r r is injective

r : s ! -> t all a: t | one a.~r r is injective and surjective

r : s+ -> t all a: t |some a.~r r is surjective

The conditions for an indexed relation are the same, but wrapped appropriately. So the
condition obtained from

r [s] :t -> ? v

for example, is

all x: s | all a:t | sole a.r[x]

A collection of sets may be declared to be disjoint or to form a partition. These give rise to
the obvious constraints.

Mutability

Mutability constraints are basic temporal constraints, so they only come into play when
state transitions are considered. A proper treatment of operations is beyond the scope of
this paper, but for now a simple example should suffice. The schema

op add (e: T!) {s’ = s + e}

declares an operation whose effect is to insert e, the argument of the operation, into the
set s.

Mutability constraints add frame-conditions to all operations. A set component may be
marked as being fixed or static; components with associated primitive types (ie, those de-
clared in the domains schema) are by definition static. A fixed set is constant; its value
never changes, and if an element is in the set before a transition, it is in the set after. For a
set s of primitive type t, this condition may be written as

all e : t | e & s = e & s’

A static set, on the other hand, maintains its containment of an element only when that
element is not created or destroyed in the transition; this condition may be written

all e : d & d’ | e & s = e & s’

where d is the domain associated with the primitive type t of s.
When the right-type of a relation is labelled as static, thus

r : A -> static B

the relation is said to be right-static, and the set of elements in the right-type mapped to by
with an element of the left-type is fixed so long as that element is not created or de-
stroyed:

all a : A & A’ | a.r = a.r’

When the left-type is marked as static

r : static A -> B

the relation is left-static, and the set of elements that map to a given element in the right-
type is fixed:

24

all b : B & B’ | b.~r = b.~r’

The combination of multiplicity and mutability constraints allow enumerations to be de-
clared conveniently without extending the language. For example,

partition Red, Blue, Green : fixed Colour !

says that Red, Blue and Green represent scalars (from the multiplicity), that they partition
the set Colour, and that their values do not change.

Partial Functions

In all specification languages in which functions can be represented, a fundamental ques-
tion arises: how to give meaning to the formula f(x) = y in which the function f is applied to
a value x that is outside its domain. This question has been the subject of debate for al-
most a century; it is connected with the old problem, in logic, of whether “The King of
France is dead” is true if France has no king.

Specification languages have taken several approaches, each with its merits. One ap-
proach, taken by Larch and advocated by Schneider [] and others, is to model all functions
as if they were total. This approach is simple and clear, and preserves Leibniz’s law–-that
from x = y one can infer f(x) = f(y). But it is unsuitable for an object modelling language,
since it makes an unnatural distinction between functions and relations, functions being
required to carry with them the set representing the domain.

Another common approach is to introduce a notion of undefinedness. This has many
variants, but it always introduces complications: a three-valued logic (in VDM), a semantics
of multiple interpretations (in Z), ad hoc distinctions between operators (in UML), and in-
evitably the loss of Leibniz’s law. In practice, it seems to confuse specifiers; Saaltink has
analyzed a large body of published Z specifications and found almost all (including one of
mine!) to be faulty in their use of partial functions [Saa97]. Even the innocuous-looking
assertion #s = 3, that the set s has three elements, is undefined in Z unless the type decla-
ration of s says explicitly that s is finite.

A simpler approach is advocated by Parnas [Par95] and was adopted in Alloy’s prede-
cessor, NP. An elementary formula in which a function is applied outside its domain is
deemed to evaluate to false. In this approach, we can infer from f(x) = y that x is in the do-
main of f, so the formula

∃ x, y. f(x) = y

which is undefined in Z, has the expected meaning, namely that some element is mapped
by f. Unfortunately, however, f(x)=f(x) is sometimes false. Moreover, the specifier must
know which formulas are regarded as elementary: if x is outside the domain of f, f(x)≠ y
will be true if ≠ is an elementary operator and false otherwise.

Alloy sidesteps the partial function problem by eliminating scalars, and treating func-
tions no differently from other relations. Leibniz’s law holds; there is no special treatment
of elementary formulas; and no need for undefinedness. Most importantly, the guards re-
quired in languages such as Z can be dropped (examples of this are given below). The
one price paid, it seems, is that membership tests can have an unexpected meaning. The
Alloy formula (a.f in s) will be true if a is outside the domain of f, since a.f then evaluates to
the empty set, which is a subset of any set. For this reason, Alloy provides a special op-
erator for membership:

a.f /in s

is short for

a.f in s && some a.f

which is false whenever a is not in f’s domain.

25

Indexed Relations

Indexed relations are part of the kernel, but their rationale is better discussed in the con-
text of the full language. A declaration

r [X] : A -> B

declares r to be an indexed collection of relations. For each value x of the domain X, there
is a relation r[x] from A to B. For example, we might declare

met [Loc] : Person -> Person

where met [loc] relates p to q when p met q in the location loc. To avoid the partial function
problem, the semantics associates a relation with every value of the index in the domain;
also, the index is required to be a variable, so that the question of what met[e] means
when e evaluates to a non-singleton-set does not arise. Here is an example of a formula:

all loc, p, q | p in met[loc].q -> q in met[loc].p

which says that the notion of meeting is symmetrical.
This scheme, which is based on the notion of qualifiers in OMT, is nice because it does

not perturb the fundamentally binary nature of the notation. It is not always convenient,
however, and I am working on an extension that would allow arbitrary tuples to be
formed.

